20 A Thin, Linear, Vibrating Beam Model:
An Example of a Higher Order PDE

For a thin beam of modest displacement, negligible rotary inertia, and stress
that can be considered not to vary significantly across a beam section, we
have the Euler-Bernoulli beam equation
4 2
E]%—Fp%:}?(x,t) (1)

where u(x,t) is the displacement of the beam’s centerline from the z-axis at
time t, F' represents the distributed body forces, F is Young’s modulus,
is moment of inertia (EI is sometimes denoted flexural rigidity), and p is
(linear) density of the beam. Here we take E, I, p as positive constants, and
define o? := EI/p.

As a fourth-order equation we need to impose four boundary conditions.
Without loss of generality, consider what boundary conditions we can impose
at = 0 (see figure 1):

e free end: u,,(0,t) =0, Uy (0,2) =0 ;
e clamped end: u(0,t) =0 = u,(0,1) ;

e simply-supported/hinged end: u(0,t) = u,,(0,¢) =0 .

20.1 Examples of unforced beam problems

Ezample: both ends simply supported (no body forces; see figure 2(a)):

(

utt:_a2u$xqu 0<$<1,t>0
u(0,t) = 0 = u,,(0,1) t>0

u(l,t) =0 = ug.(1,t)

| u(z,0) = f(z), w(z,0) =g(z) 0<z<l1
Separating variables, let u(z,t) = X (z)T'(¢). Then
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Figure 1: Visualizing beam boundary conditions at x = 0:(a) free-end b.c.
(b) clamped-end b.c. (c¢) simply-supported/hinged-end b.c.

and

4X _AX=0 0O<z<l

(2)

X(0) = X(1) = G (0) = (1) =0.
Without going into a detailed argument, assume the eigenvalues of this
problem are real. Let a solution to (2) be {\, X (x)}. Multiply the equation
(2) by X and integrate. Since

d*X d3X dX d*X d?X D¢
X = 1 AX X / da / T2y
/ do=XGmh =Gzt | () ()

then

> X ) VX, b,
/(dx2)dx— /Xda:—():>)\ /O(W)da://onx.

Thus, A > 0. If A\ = 0, then X (x) = Az®>+ Ba?>+Cx+ D, so X" = 6Ax+2B.
X(0) = D =0, X"(0) = 2B = 0, X"(1) = 64 = 0, X(1) = C = 0,
so X = 0. Hence, A = 0 can not be an eigenvalue. For A > 0, T'(¢) =
a cos(av/t) + bsm(om/_t) and for the EVP, let X = €"*; upon substituting
into the equation, r* — X\ = 0, or r2 = £/, or r = £A/4 £i\V/4. For
convenience, let = A/4. Then X (x) = A cos(uz)+ B sin(uz)+Ccosh(uz)+
Dsinh(pz). Now X(0) = A+C =0,0=X"(0) = —p?A + p*C = —2u*A,
so A=C =0. Also, X(1) =0 = X"(1) implies D = 0, so finally we have
Bsin(u) = 0. Since B # 0 (otherwise X = 0), so sin(u) = 0. This gives
[= pp = nm, forn = 1,2,... (so A/* = p2 = n2z?). Hence, X(z) =
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Figure 2: Beam boundary conditions for examples/exercises:(a) simply-
supported b.c.s at both ends; (b) beam clamped at the x = 0 end, free
at the x =1 end

X, (z) = sin(nmz) =

u(z,t) = Z{an cos(an?m*t) + b, sin(an®r*t)} sin(nnz) .

n=1

Also,

f(@) =u(z,0)=>"" a,sin(nrx) — a, = 2f01 f(z)sin(nmzx)dx

n=1

g(x) = u(x,0) =3 07 an®*m?b, sin(nwz) — b, = ﬁ fol g(z) sin(nrz)dz .

Ezercise: For the above problem find u(x,t) when
a) f(x) = g(x) = sin(mz);
b) f(z) = 1 -2, g(z) = 0.

Exercise: Suppose the above beam is “weakly” damped, that is, it is still
simply supported on both ends (see figure 2(a)), but now

2
Uge + KU + O Ugpy = 0 .

Assume 0 < k < 2am?, and show that

u(z,t) = e M2 Z{an cos(wpt) + by, sin(w,t)} sin(nrz) |

n=1

where w,, := V4a2\, — k%/2.



FEzercise: Clamped end on the left, free end on the right (see figure 2(b)):

;

utt:_a2umx:px 0<$<1,t>0
u(0,t) = 0 = u,(0,1) t>0

| u(2,0) = f(z), w(z,0) =g(x) 0<z<1

1. Obtain the fourth-order EVP and show that A = 0 can not be an
eigenvalue.

2. Obtain the transcendental relation that p = A* satisfies, and show
there is an infinite number of solutions, 0 < py < pg < .... Thus, the
associated eigenfunctions have the form

sin(p,) — sinh(py,)

con(in) T cosh(j) W) sin{jin))

X, (z) = cos(pnz)—cosh(p,x)+

3. Assume { X, } are orthogonal set of functions. Write the form of u(zx,t)
and formulas for the coefficients.

Exercise: Consider a model for a thin beam that has length 1, is clamped at
x = 0, and is simply supported at x = 1. Assume general initial conditions.
Find the transcendental relation that determines the eigenvalues and write
out the associated eigenfunctions (no arbitrary constants). Then solve the ¢
equation and write the series solution for the displacement wu.

Exercise: Consider a flexible beam of unit length clamped at both ends.
Hence, small transverse wave motion in the beam can be modeled by

’utt+a2uza)$x:0 0<$<17t>0
u(0,t) =0 = u(0,1) t>0

ur(1,8) = 0 = u,(1,t)

| u(2,0) = f(2), w(z,0) =g(r) O<x<l1.
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Figure 3: Rotating beam for the exercise below

Given a solution u(x,t), show that the energy functional

1 1
E(t) = 5/ {()? + 02y} da
0
is conserved; that is, £ is independent of ¢ for all £ > 0.

Exercise: Consider a special case of a rotor, i.e. an Euler-Bernoulli beam
that is rotating. If somehow we can have it vibrate only in one plane and be
simply supported at both ends, then we might consider a model of the form

Uy + P Usss, — Pu=0 0<z2<l,t>0
u(0,t) =0 =wu,,(0,t) t>0
u(l,t) =0=wu,.(l,t) .

This is similar to the first example except for the -spin term. How does
this affect the vibrating modes (eigenvalues) of the problem, and what might
you surmise about adding spin to the beam this way?



Remark: In thinking about the model for a piano string almost everyone
models it as an ideal string
0%u 0%u
pAW_TW O<z<l,
where, as usual, T is the tension, p is the linear density, and A is the (uniform)
cross-sectional area of the string. Howison ! commented that a real piano
string has a small bending stiffness, so a combination of the string model
and the beam model might be a more appropriate model for piano wire
displacement: ) ) .
ou o“u 2 0%u
A8t2 Ta + FAk 9l =0,

where E is Young’s modulus ? and k is radius of gyration of the cross-section.
(For example, for a cross-section that is circular with radius a, k? = a?/2.)

To get a better idea of the relative size of this new term, we need to
non-dimensionalize (that is, scale) the equation. Let & = z/l, so 0/0x =
(1/1)0/0z, etc. by the chain rule. So we are scaling the spatial variable by
the length of the string. Similarly, let ¢ = ct/l, where ¢ = T//pA, so that c
has units of length/time, i.e. of speed. Thus 7 and # are dimensionless. Now
let @(%,t) = u(x,t), substitute the derivatives into the above equation, then
multiply through by [2/pAc? and drop the tilde notation (for convenience).
Thus,

Pu Pu d'u n _ EAR?
EERE +€8x4 =0 where ¢ := T

Example: Typical values would be a = 1 mm, E ~ 2 x 10! (SI units),
p=1T800,1 =1m, T = 1000 N. This gives ¢ ~ 3.1 x 1074, quite small,
but the term is negligible and can be dropped only if the fourth-order term
remains small over the whole domain, except perhaps right at the spatial
boundary.

20.2 Periodic forcing of a thin beam

Historical note: Broughton bridge (Manchester, England), 1831
This suspension bridge collapsed when soldiers were marching across it. The

1S, Howison, Practical Applied Mathematics: Modeling, Analysis, Approxi-
mation, Cambridge Univ. Press, 2005
2Young’s modulus, sometimes called the elastic modulus, is a measure of stress/strain.
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Figure 4: Cartoon of my Florida draw bridge for the periodically forced beam
problem.

collapse could have been caused either by the weight of the soldiers exceed-
ing the capacity of the bridge, or their synchronized steps causing a beating
or resonance situation associated with the bridge. But, as a consequence of
the incident, all armies break cadence crossing bridges. However, this has
not been followed necessarily by marching bands. The author experienced a
beating situation with a steel draw bridge marching across it with a band in
the Orange Bowl Parade in Miami, Florida when he was in high school (see
figure 4). We basically fell all over each other. The experience motivates the
next problem.

Example: Consider the problem
puy = —Eluppr, + acos(wt)pp(x) 0<z<l,t>0 (3)

where ¢, (x) is one of the eigenfunctions of the problem’s EVP to be deter-

mined. Also
u(z,0) =0=wu(z,0) O0<az<l
u(0,1) =0 = ug (0,t)  t>0 (4)
Uzz (1, 1) = 0 = Ugzr (I, 1) >0

FEzercise: Show that the non-forced, steady state solution is u(z) = Ax,
where A is an arbitrary constant.



Homogeneous problem:

puyy = —ElUgppy 0<x<l
u(0,1) = 0 = u,,(0,) t>0

Uzz (1, 1) = 0 = Uy (1, 1) .

With u(z,t) = T(t)¢p(x), we have %%% = —éj%’ = —)\, S0
( ‘C%‘ff —Xp=0 O<z<l
6(0) = 0= £ (0)
| () =0=320)

Assume A > 0. For the characteristic equation, ¢ = €™, we obtain r* — )\, or
r2 = +£+/\, which gives r = £AY4, +i\/4, assuming A > 0. If A = 0, from
the exercise above, ¢ = ¢o(x) = Az, that is, 0 is an eigenvalue. Now for
A > 0, define yu := A4, Then ¢(z) = Acosh(ux) + Bsinh(pzx) + C cos(ux) +
Dsin(uz). Also, ¢"(z) = p?*{Acosh(uzx)+Bsinh(uz)—C cos(ux)—D sin(ux)}.
So ¢(0) = A+ C and ¢"(0) = p?*(A — C). Hence, A =C =0, so ¢'(x) =
pw?{Bsinh(uzx) — Dsin(pz)} and ¢ (x) = p*{Bcosh(ux) — D cos(uz)}. Thus

{ @"(l) = 0 = p*{Bsinh(ul) — Dsin(ul)}
¢"' (1) = 0 = p*{Bcosh(ul) — D cos(ul)}

This can be written in matrix form as

sinh(pl)  —sin(ul) B 0

cosh(ul) — cos(ul) D 0

Since B, D can not be zero, we need the determinent of the matrix to be 0 for
a non-zero solution vector. Hence, cosh(ul) sin(pul) — sinh(pul) cos(ul) = 0, or

tanh(ul) = tan(pl) .
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Figure 5: Sketch of graph of tanh(y) versus tan(y), showing the ordered
sequence of positive eigenvalues.

Let y = pl, then from figure 5 we see that there is an ordered increasing set
of solutions yi, k = 1,2,.... For “large” k, yx ~ arctan(l) + km = 7 /4 + km,
and y = uil, or A\, = (yx/1)*. Now Bsinh(yx) — Dsin(yz) =0, so B = By, =

szlé?(’;]z)Dk, which gives, up to a multiplicative constant,
n(ul)
On(x) = sin(u,x) + %smh(un@ :

So, in equation (3) the spatial part of the forcing is one of these eigenfunc-
tions.

Now, for equation (3), let u(z,t) = T'(t)pm(x); then,

T B d*o,,
p ey Dom(e) = ~EIT(H) 2

() 4+ acos(wt)pp(z)
but since d¢,,/dx* = \,,¢m, then

CT 1 o\, T = 2cos(wt) t>0

Case 1: w* # %Am
Thus, the right side function is not a solution to the homogeneous equation.



Figure 6: Beating behavior as discussed in case 1 of the periodically forced
beam problem.

So let Tput(t) = K cos(wt); upon substituting into the equation, we have
—w?K + (EI/p)A\nK = a/p. Define w?, := %)\m' Then K = -2 4o

w2, —w??

a
T(t) = Acos(wnt) + Bsin(w,t) + w?——puﬁ cos(wt) .
Now T'(0) = A+ Cﬂa—/,’)u,z =0 and 2£(0) = w,, B =0, so
T(t) = %{cos(wt) — cos(wnt)}
w2, — w? "
[ 2a/p | (wm - wt)] , <wm —|—wt>
= in in :
w2 —w? i > 2

after use of a trig addition formula. In the interesting case where 0 <
lwm — w] << 1, we have a large amplitude factor multiplying a “large”
frequency Sin(%t), namely the term in square brackets, with this ampli-
tude having “small” frequency = large period (see figure 6).

C g2 )2
Case 2: w* = w3,

In this case the forcing function is a solution to the homogeneous equation,
SO 2T
a
—— + w?T = = cos(wt
If we let Tpo(t) = Kit cos(wt) + Kyt sin(wt) via the undetermined coefficient
method, then upon substituting this into the equation, and using the initial

10



conditions, we obtain K; = 0, and

at
T(t) = —sin(wt) .
(1) = 5 sinfut)
That is, we have the resonance condition of having the amplitude go un-
bounded as ¢ — oco. Finally, in this case u(w,t) = 525 sin(wt)dy(x). (This
case is not realistic since the model assumptions do not allow for large am-
plitude motion.)
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